LOA REACH CONSORTIUM Webinar: Utility of Metabolomics to Support Read-Across for UVCB substances under REACH

30th November 2021 13:00-16:00 CET

LOA REACH CONSORTIUM

Utility of Metabolomics to Support Read-Across for UVCB substances under REACH Webinar 30th November 2021

> Introduction Mike Penman

Webinar Programme

Introduction	Mike Penman (LOA)	13:00 (CET)
Read-Across in REACH; application to UVCBs	Dr. David Bell (ECHA, Helsinki)	13:10
Introduction to Metabolomics	Prof. Mark Viant (University of Birmingham, UK)	13:25
Use of Metabolomics for Read-Across	Prof. Bennard Van Ravenzwaay (BASF)	13:45
Break		14:05
Use of Metabolomics to Assess Biological Col Category Justification A. Introduction B. Experimental Design and Data Review	Mike Penman (LOA)	14:10
C. Conclusion	Dr. Martijn Rooseboom (Shell/LOA)	
Discussion moderator	Prof. Mark Viant (University of Birmingham, UK)	15:15
Close		16:00

LOA Background

- Registration, Evaluation Authorisation of Chemicals (2007)
 - Requirement for all manufactures / importers of substances to submit dossier to European CHemicals Agency
 - Intrinsic properties / Tonnage / Uses / Risk Assessment / Risk Management
- Olefins and Aromatics
 - Many data rich substances with history of regulatory dialogue
 - Many complex production streams of unknown / variable composition

LOA Background

• LOA formed in 2008

- — ... to assist its Members with their REACH registrations in a cost-efficient manner by
 combining financial and human resources
- ... ensure that the documentation produced is fit for the purpose of supporting Member Companies' REACH registrations

• Scope

- 46 Member companies 250 Registrant companies
- 150 substances under management
 - 28 monoconstituents / reaction masses
 - 115 UVCB "streams" from production processes

LOA Streams and Categories

- Basic production process Steam Cracking of petroleum streams
 - Aim isolate pure substances for further syntheses
 - The petrochemical building blocks
 - Process quenching of short hydrocarbons to get pure substances
 - Streams are by-products and intermediates of this process and not the main aim
 - By contrast Refining and pyrolysis though Catalytic cracking aims to produce streams
 - Generally, not intended for wide dispersive use
 - Tend to have higher levels of identified olefin and aromatic substances which are registered as mono-constituent
 - Able to characterise the majority of constituents
 - Nature of the LOA categories varies considerably depending upon process step

LOA UVCB categories by C-number and manufacturing process

LOA	Category Name	Predominant	Category Manufacturing Process	No.
Category		C Number		Substances
Α	Aliphatic / Cyclic C5 and Higher	C5 to C8	HC streams typ. from a naphtha/pyrolysis gasoline treatment and aromatic extraction unit involving pre-	6
			distillation, hydrogenation and extractive distillation processes. Produced after aromatic extraction or (fractionated) distillation of hydrotroated particles	
E	C5 non-cyclics	C4 to C8	Hydrocarbon streams typ. from the steam cracking process as products of distillation processes. This C5+	6
			cut (typical boiling range of approximately 0 to 75 °C) predominately consist of C5 hydrocarbons. The streams contain significant levels of olefins and diolefins	
С	C4, Low 1,3-Butadiene (<0.1%)	C4	Typically produced from the steam-cracking of naphtha and following the extraction of 1,3-butadiene	5
			from a C4-rich stream.	
D	C4, High 1,3-Butadiene (≥0.1%)	C4	Typically produced from the steam-cracking of naphtha as a C4-rich stream.	6
н	High Benzene Naphthas	C5 to C11	Distillation of products from a steam cracking process or by pyrolysis. Predominantly hydrocarbons >C6	26
			and BP range 30°C to 300°C.	
J	Low Benzene Naphthas	C7 to C13	Distillation of products from a steam cracking process or by pyrolysis. <0.1% benzene.	4
L	Resin Oils and Cyclic Dienes	C5 to C15	Hydrocarbons typ. produced by distillation of products from a steam cracking process. Non-	10*
			hydrotreated products (Resin Oils) and/or concentrates of (1) DCPD and (2) (MeCPD).	
В	Butylene Oligomers	C4 to C20	Streams obtained by the oligomerisation of butylenes optionally followed by hydrotreating processes.	8
			Predominantly C8, C12, C16 and/or C20 hydrocarbons. The streams' constituents boil between 30 and	
			350 °C and the streams contain less than 0.1% butadiene.	
G	Fuel Oils	C6 to C21	Hydrocarbon streams typically produced by distillation of products: from a steam cracking process, from	13
			an ethylene manufacturing process; residual fraction from these distillation processes or produced by	
			pyrolysis.	
К	Other Petroleum Gases	C1 to C5	Hydrocarbon streams containing petroleum gases (alkanes/alkenes) predominantly in the C1-C5 range	29
			(with some carbon numbers present at lower levels up to C10) and include some LPGs. The majority of	
			the members of this category contain <0.1% 1,3-butadiene.	

LOA Streams and Categories

- Approach in 2010 to meet Information Requirements included marker substances
 - Major mono-constituents that were relatively data rich
 - Drove hazard of the stream and were usual markers of exposure
- Since 2010, appreciation that more data was required on the streams themselves
 - Development of guidance (RAAF) and DART requirements
- Question for complex streams
 - How to show biological coherence as well as Chemical coherence?
 - Support read across with additional data not replace statutory testing

Webinar Programme

Introduction	Mike Penman (LOA)	13:00 (CET)			
Read-Across in REACH; application to UVCBs	Dr. David Bell (ECHA, Helsinki)	13:10			
Introduction to Metabolomics	Prof. Mark Viant (University of Birmingham, UK)	13:25			
Use of Metabolomics for Read-Across	Prof. Bennard Van Ravenzwaay (BASF)	13:45			
Break		14:05			
 Use of Metabolomics to Assess Biological Coll Category Justification A. Introduction B. Experimental Design and Data Review 	Mike Penman (LOA) Prof. Hennicke Kamp (BASF)	14:10			
C. Conclusion	Dr. Martijn Rooseboom (Shell/LOA)				
Discussion moderator	Prof. Mark Viant (University of Birmingham, UK)	15:15			
Close		16:00			

Read-across in REACH; application to UVCBs

Utility of Metabolomics to Support Read-Across for UVCB substances under REACH

30 November 2021

David Bell European Chemicals Agency

- Legal requirements
- Application to UVCBs
 - Similarity for UVCBs
 - RAAF/ multi-constituent RAAF
 - Large category approach

This is not an official position of ECHA. This presentation is intended to be educational, but you should consult ECHA's guidance and the legal text for definitive information. This presentation is not an endorsement of any specific case or approach used for read-across in a specific case.

Annex XI, 1.5

Grouping and read-across

Annex XI, 1.5

- Legal text amended
 - COMMISSION REGULATION (EU) 2021/979 of 17 June 2021
 - "This Regulation shall enter into force on the twentieth day following that of its publication in the Official Journal of the European Union.
 - It shall apply from 8 January 2022."
- See <u>ECHA news release</u> and the <u>Regulation</u>
 - Guidance update anticipated in December 2021

Legal text- highlights

Substances whose physicochemical, toxicological and ecotoxicological properties are likely to be similar or follow a regular pattern as a result of **structural similarity**, may be considered as a group, or category, of substances. Application of the group concept requires that physicochemical properties, **human health effects and environmental effects or environmental fate may be predicted** from data for reference substance(s) within the group by interpolation to other substances in the group (read-across approach). This avoids the need to test every substance for every endpoint.

•••

Structural similarity for UVCB substances shall be established on the basis of similarities in the structures of the constituents, together with the concentration of these constituents and variability in the concentration of these constituents. If it can be demonstrated that the identification of all individual constituents is not technically possible or impractical, the structural similarity may be demonstrated by other means, to enable a quantitative and qualitative comparison of the actual composition between substances. ...

Legal text- highlights II

•••

In all cases, results shall fulfil all of the following conditions:

- be adequate for the purpose of classification and labelling and/or risk assessment,
- have adequate and reliable coverage of the key parameters addressed in the corresponding study that shall normally be performed for a particular information requirement,
- cover an exposure duration comparable to or longer than the corresponding study that shall normally be performed for a particular information requirement if exposure duration is a relevant parameter.

•••

Application to UVCBs

Structural similarity for UVCBs

 "Structural similarity for UVCB substances shall be established on the basis of similarities in the structures of the constituents, together with the concentration of these constituents and variability in the concentration of these constituents.

If it can be demonstrated that the identification of all individual constituents is not technically possible or impractical, the structural similarity may be demonstrated by other means, to enable a quantitative and qualitative comparison of the actual composition between substances."

- No or inadequate information on constituents = failure
- Requirement for information on concentration and variability of constituents
- For complex UVCBs, impractical to identify and quantify all individual constituents
- Case-specific considerations.
 - Structural similarity is for the purpose of demonstrating that you can predict human health or ENV properties, and must be fit for that purpose
 - ECHA has accepted e.g. detailed 2-D GC plus specific constituent identification

RAAF/ multi-constituent RAAF

- How ECHA assesses read-across
 - Read-across assessment framework (RAAF-<u>link</u>)
 - UVCB/multi-constituent RAAF (link)
- Key issues
 - Category or analogue approach
 - (Bio)transformation to common compound(s) or Different compounds have the same type of effect(s)
 - Check list of scientific issues that need addressing for each scenario

ELECHA Generic category approach-HH

- RAAF scenario 4 or 6
 - Sufficient data (compositional data, bridging data and higher-tier data) to provide confidence in a prediction based on similar/ regular pattern of biological activity
 - Analytical and bridging data must support the read-across
 - Case-specific assessment

Thank you!

david.bell@echa.europa.eu

Webinar Programme

Introduction	Mike Penman (LOA)	13:00 (CET)			
Read-Across in REACH; application to UVCBs	Dr. David Bell (ECHA, Helsinki)	13:10			
Introduction to Metabolomics	Prof. Mark Viant (University of Birmingham, UK)	13:25			
Use of Metabolomics for Read-Across	Prof. Bennard Van Ravenzwaay (BASF)	13:45			
Break		14:05			
Use of Metabolomics to Assess Biological Col Category Justification A. Introduction B. Experimental Design and Data Review C. Conclusion	herence in UVCB Read-Across and Mike Penman (LOA) Prof. Hennicke Kamp (BASF) Dr. Martiin Rooseboom (Shell/LOA)	14:10			
Discussion moderator	Prof. Mark Viant (University of Birmingham, UK)	15:15			
Close		16:00			

November 30 2021

Introduction to Metabolomics

Mark Viant

Professor of Metabolomics, University of Birmingham, UK

LOA Webinar

30th November 2021

Four take-home messages

- Metabolic biomarkers are already used as 'endpoints' in OECD Test Guidelines to indicate mode-of-action
- Metabolic biomarkers typically occur downstream in the molecular cascade that follows chemical exposure, hence they can be good predictors of phenotype (i.e., apical endpoints)
- Metabolomics is simply a technology that measures multiple metabolic biomarkers simultaneously; it generates data that is typically analysed using multivariate statistics
- Metabolomics can be used for grouping because chemicals that act via the same MoA should induce similar metabolic biomarkers.

Metabolic biomarkers can predict MoA (1)

OECD/OCDE

BETTER POLICIES FOR BETTER LIVES

OECD GUIDELINE FOR THE TESTING OF CHEMICALS

408

Repeated Dose 90-day Oral Toxicity Study in Rodents

4. The revised Guideline places additional emphasis on endocrine endpoints to combine with the existing sensitivity to neurological and immunological and reproductive effects. The need for careful clinical observations of the animals, so as to obtain as much information as possible, is also stressed. Required endpoints include the measurement of thyroxine (T4), triiodothyronine (T3) thyroid stimulating hormone (TSH) and thyroid gland weight, which are responsive to thyroid pathway perturbation (2). In addition, serum total

Serum/Plasma Hormone Analyses												
Thyroxine (T4)	FSH											
TSH	LH											
T3	Oestradiol											
	Testosterone											

Metabolic biomarkers can predict MoA (2)

HO

ΝH₂

T3 or T4

STRESS!

devTOX *quick*PredictTM is a biomarker-based, human, *in* vitro assay that predicts developmental toxicity. It utilizes key biomarkers identified using Stemina's metabolomics platform.

Conceptually - lets combine these metabolic biomarkers into a biomarker panel to predict multiple MoAs

Conceptually - lets combine these metabolic biomarkers into a biomarker panel to predict multiple MoAs

This is the BASF *Metabolic Profiling* approach, they are measuring the green 'biomarker panel'

- Amino acids
- Carbohydrates
- Lipids
- Steroids
- Nucleotides
- 1,000's metabolites in
 - a 'metabolome'

Metabolic profiling: Measurement of the <u>endogenous metabolic responses</u> of a biological system (to a chemical); <u>not</u> the metabolites of the exposure chemical

Central dogma of molecular biology (simplified view)

Why focus on metabolic biomarkers?

How is this relevant to grouping / read-across?

Metabolic biomarkers (in the metabolome) are condition dependent

Metabolic fingerprint

Metabolic biomarkers (in the metabolome) are condition dependent

- Chemicals acting via different MoAs will perturb different sets of metabolic biomarkers
- Chemicals acting via the same MoA should perturb similar metabolic biomarkers

pt new: Existing OECD Guidance for G/RAx

Deficiencies in Use of Grouping / Read-Across

• ECHA report - The use of alternatives to testing on animals for the REACH Regulation June 2020

https://echa.europa.eu/documents/10162/0/alternatives_test_animals_2020_en.pdf

- Most common shortcomings include (from list of 6):
 - lack of, or low quality of, supporting data;
 - shortcomings in the hypothesis and justification of the toxicological prediction.
- "To increase the robustness and regulatory acceptance for high-tier human health endpoints, additional data is needed, particularly related to toxicological mechanisms and ADME properties."

How could molecular biomarkers be added to the multi-step process of G/RAx?

How can we measure "toxicological similarity" (or differences) using metabolomics data?

- Univariate statistical analysis deals with one metabolite at a time, but BASF are measuring ca. 270 metabolites simultaneously
- Multivariate statistical analysis can handle the analysis of all the measured metabolites
- Multivariate analysis takes into account the interactions between metabolites
- PCA, HCA

Principal components analysis (PCA)

PCA scores plot

Response to Response to chemical 1 chemical 2... 5

PC 2

PC1

GC-MS, LC-MS/MS

Determine which metabolites show the greatest variation across all the samples

Visualise the similarities/differences between all 5 chemicals in the study

Hierarchical cluster analysis (HCA)

Dendrogram

Response to Response to chemical 1 chemical 2... 5

GC-MS, LC-MS/MS

Calculate similarity of the metabolite fingerprints between each pair of chemicals

Visualise the similarities/differences between all 5 chemicals in the study

Four take-home messages

- Metabolic biomarkers are already used as 'endpoints' in OECD Test Guidelines to indicate mode-of-action
- Metabolic biomarkers typically occur downstream in the molecular cascade that follows chemical exposure, hence they can be good predictors of phenotype (i.e., apical endpoints)
- Metabolomics is simply a technology that measures multiple metabolic biomarkers simultaneously; it generates data that is typically analysed using multivariate statistics
- Metabolomics can be used for grouping because chemicals that act via the same MoA should induce similar metabolic biomarkers.

Webinar Programme

Introduction	Mike Penman (LOA)	13:00 (CET)			
Read-Across in REACH; application to UVCBs	Dr. David Bell (ECHA, Helsinki)	13:10			
Introduction to Metabolomics	Prof. Mark Viant (University of Birmingham, UK)	13:25			
Use of Metabolomics for Read-Across	Prof. Bennard Van Ravenzwaay (BASF)	13:45			
Break		14:05			
Use of Metabolomics to Assess Biological Col Category Justification A. Introduction B. Experimental Design and Data Review	Mike Penman (LOA) Prof. Hennicke Kamp (BASE)	14:10			
C. Conclusion	Dr. Martijn Rooseboom (Shell/LOA)				
Discussion moderator	Prof. Mark Viant (University of Birmingham, UK)	15:15			
Close		16:00			

Use of metabolomics for Read-Across

- an introduction -

Prof. Dr. Bennard van Ravenzwaay

The Use of MetaMap®Tox

SAMPLE

REFERENCE 300 Known Metabolites

Internal

MetaMap®Tox: Reduction through Refinement Blood metabolome analysis in short-term studies

MetaMap®Tox: Reference Data Base

Metabolite profile

Recognising mode-of-action: peroxisome proliferation

	× pValu	e: 0.2	* Fraction	n of metabolites: 0.9			t-Test v	ersion:	• Si • Si	tudy Co eternisc	ontrois edastic	- t-Test	(Melch t-Test)
* Fold	d Chang	e: 1.0							Oho	omosce	edastic	t-Test	(velicit creat) (pooled variance)
													······
		(2-F	ormylamino-3-carboxythiophen) (MC	DA5)					~	0	\geq	Clof	ibrate (MOA50)
		1,1,	2,2-Tetrachloroethane (MOA29)	· · · · · · · · · · · · · · · · · · ·						M	ove	Fen	ofibrate (MOA48)
		1,2-	Cyclohexanedicarboxylic acid diisoi Dichloroethane (MOA59)	nonyl ester (MUA26)						6	\gg	VVy	14643 (MUA51)
Comp	ounds:	1,3-	Dichloro-2-propanol (MOA60)							Mov	<u>ve All</u>		
		1,3-	Dinitrobenzene (MOA53) Butanediol (MOA67)							Ror	S) move		
		1,4-	Dinitrobenzene (MOA54)							(≪)		
		1.4-	Dioxane (MOA55) Phenvlene diisothiocvanate (MOA7)	2)					~	Rem	ove All		
				·		_	_					Ľ	
Analys	sis grou	ps:			100		l mh					Metab	olite Information Columns: 📃
			_ fl/ fl14 fl28 ⊆ fh/ ⊆ fh14 ⊆	th28 ml/ ml14	ml28 🔲 r	nh/ 🔲	mh14	mh28					
			Submit parameters Rese	t parameters									
Eind Mot	tobolito				Leven	l. dea		ne siau					
Find Med	(abonte:				Legent	a. laec	reased	nu sigr	mcant	change	es incre	aseu	
ShowSe	elected	Metabo	lites (Find Compounds) (Sa	we Metabolite List									
Select Al	l <u>i Sele</u> i	<u>ct None</u>			Clofibra	ate	Fe	nofibra	ate	V	ly 1464	13	
					(MOA5	0)		MOA48)	(MOA51	I)	
Select Di	irectio	Ancho	or Metabolite	MET_CHEM_ID fl	17 fh14	fh28	fh7	fh14	fh28	fh7	fh14	fh28	
v	ıp 🔽		Pantothenic acid	18000225 1.	07 1.75	1.22	2.36	2.75	3.27	1.44	2.22	2.27	
v	ub 🦰		Coenzyme Q9	18000281 1.	86 1.64	2.55	1.51	1.72	1.86	1.7	1.91	2.11	
v	ıb 🔼		Glycerol, lipid fraction	28000002 1.	39 1.64	4.99	2.35	2.47	2.19	1.11	1.45	1.17	
🔽 U	ub 🦰		Palmitic acid (C16:0)	28000003 1.	05 1.38	2.31	1.72	1.39	1.42	1.21	1.31	1.02	
v u	ıp 🔽		gamma-Linolenic acid (C18:c	28000477 2.	04 1.88	7.0	3.64	2.83	2.12	2.08	2.12	1.94	
V d	iown 🔽		16-Methylheptadecanoic acid	28000478 <mark>0.</mark>	55 0.75	0.75	0.59	0.55	0.59	0.67	0.85	0.56	
V d	łown 🔽		17-Methyloctadecanoic acid	28000479 <mark>0.</mark>	48 0.57	0.77	0.5	0.57	<mark>0.5</mark>	0.63	<mark>0.6</mark>	0.47	
v u	ıp 🗸		Threonic acid	38000083 1.	23 1.3	1.3	1.46	1.67	1.61	1.64	1.5	1.18	
V d	łown 🚩		<u>Cytosine (Σ)</u>	38000441 <mark>0.</mark>	87 0.86	1.0	0.79	0.79	0.87	0.69	0.7	0.79	
v d	iown 🔽		Phosphatidylcholine No 04 ((Σ)	68000020 <mark>0.</mark>	67 0.59	0.68	0.71	0.64	0.76	0.84	0.8	1.0	
ShowSe	elected	Metabo	lites Find Compounds Sa	ve Metabolite List)									

Copyright (C) Metanomics 2005-2008. Version 3.2 (4076) about MetaMap

Toxicology | Yield | release notes | preferences | help | logout

Recognising mode-of-action: peroxisome proliferation

🛪 Fold Chande:	1.0					Silere	eroscedastic	t-Test (vveich t-Test	t)				
· · · · · · · · · · · · · · · · · · ·						🔿 horr	noscedastic t	-Test (pooled varian	ce)				
Compounds:	(2-Formylamino-3 1,1,2,2-Tetrachlo 1,2-Cyclohexane 1,3-Dichloro-2-pn 1,3-Dinitrobenzer 1,4-Butanediol (N 1,4-Dinitrobenzer 1,4-Dioxane (MO 1,4-Phenylene di	I-carboxythiophen) (MC roethane (MOA29) dicarboxylic acid diison e (MOA59) ne (MOA50) ie (MOA53) 10A57) ie (MOA54) A55) isothiocyanate (MOA7)	0A5) nonyl ester (MOA26 2))			Move Move All C Remove Remove All	Clofibrate (MOA5) Fenofibrate (MOA Wy 14643 (MOA2 Bezafibrate (MOA Mecoprop-p (MOA Dichlorprop-p (MO Benzylbutyl Phth Diethylhexylphtha	0) 448) 51) 449) A1) DA1) DA1) alate (MOA5) alate (MOA58)				
Analysis groups	: 11	☑ fh 1128 ☑ fh7 ☑ fh14 ☑	□ ml fh28 □ ml7 □ ml14	1 4 🗌 ml28 🔲 n	mh nh7 mh14	mh28		Metabolite Informati	ion Columns:				
	Submi	parameters Rese	parameters)										
· · · · · · · · · · · · · · · · · · ·													
ind Metabolites	ShowAll Metak	olites Export Tal	ole to Excel	Legend	l: decreased n	o significant ch	nanges <mark>increa</mark>	ised					
ShowSelected Me	ShowAll Metak	oolites) Export Tal d Compounds) Sa	ole to Excel) ve Metabolite List)	Legend	l: decreased n	o significant cł	nanges <mark>increa</mark>	ised					
ShowSelected Me	ShowAll Metat	oolites) (Export Tal d Compounds) (Sa	ole to Excel) ve Metabolite List)	Legend Clofibrate (MOA50)	Eenofibrate	Wy 14643	Bezafibra	ate Mecoprop-p	Dichlorprop-	Benzylbutyl Phthalate (MOA6)	Diethyl	lhexylpl (MOA58	nthalate
ShowSelected Me elect All Select I elect Direction A	ShowAll Metab etabolites) (Fin None Anchor Metabolite	oolites) (Export Tal d Compounds) (Sa	ole to Excel) ve Metabolite List) MET_CHEM_ID 1	Legend Clofibrate (MOA50) fh7 fh14 fh28	E decreased n Fenofibrate (MOA48)	Wy 14643 (MOA51) fh7 fh14 fh21	Bezafibra (MOA49 8 fh7 fh14 ft	ate Mecoprop-p)) (MOA1) h28 fh7 fh14 fh28	Dichlorprop- p (MOA1) fh7 fh14 fh28	Benzylbutyl Phthalate (MOA6) fh7 fh14 fh28	Diethyl fh7	lhexylpl (MOA58 fh14	nthalate) fh28
ShowSelected Me elect All Select I elect Direction A	ShowAll Metab etabolites) (Fin None Anchor Metabolite Pantotheni	oolites) (Export Tal d Compounds) (Sa sacid	MET_CHEM_ID 1	Clofibrate (MOA50) fh7 fh14 fh28 1.07 1.75 1.22	Eenofibrate (MOA48) fh7 fh14 fh28 2.36 2.75 3.27	Wy 14643 (MOA51) fh7 fh14 fh23 1.44 2.22 2.23	Bezafibra (MOA49 8 fh7 fh14 ff 7 2.12 2.94 2	ate Mecoprop-p (MOA1) h28 fh7 fh14 fh28 2.53 2.56 4.78 5.31	Dichlorprop- p (MOA1) fh7 fh14 fh28 2.0 3.09 3.11	Benzylbutyl Phthalate (MOA6) fh7 fh14 fh28 1.82 2.06 2.42	Diethyl fh7 1.45	lhexylpl (MOA58 fh14 1.59	nthalate) fh28 1.47
ShowSelected Me elect All Select I elect Direction A Up up v	ShowAll Metab etabolites Fin None Anchor Metabolite Pantotheni Coenzyme	oolites) (Export Tal d Compounds) (Sa sacid Q9	MET_CHEM_ID 1 18000225 1 18000281	Clofibrate (MOA50) fh7 fh14 fh28 1.07 1.75 1.22 1.86 1.64 2.55	Enofibrate (MOA48) 107 16141028 2.36 2.75 3.27 1.51 1.72 1.86	o significant ch Wy 14643 (MOA51) M7 fh14 fh24 1.44 2.22 2.23 1.7 1.91 2.1	Bezafibra (MOA49 8 fh7 fh14 ft 7 2.12 2.94 2 1 1.34 1.13 1	Mecoprop-p (MOA1) h7 fh14 fh2 2.53 2.56 4.78 5.31 1.63 1.28 1.63 1.76	Dichlorprop p (MOA1) fh7 fh14 fh28 2.0 3.09 3.11 1.79 2.25 2.58	Benzylbutyl Phthalate (MOA6) fh7 fh14 fh28 1.82 2.06 2.42 1.44 1.5 1.78	Diethyl fh7 1.45 1.97	(MOA58 fh14 1.59 1.6	thalate) fh28 1.47 1.6
ShowSelected Me elect All Select I v up v up v up v	ShowAll Metab etabolites) (Fin None Anchor Metabolite Pantotheni Coenzyme Glycerol, lii	oolites) (Export Tal d Compounds) (Sa cacid Qog oid fraction	MET_CHEM_ID 18000225 18000281 28000002	Clofibrate (MOA50) fh7 fh14 fh28 .07 1.75 1.22 .86 1.64 2.55 1.39 1.64 4.99	Eenofibrate (MOA48) fh7 fh14 fh28 2.36 2.75 3.27 1.51 1.72 1.86 2.35 2.47 2.19	o significant ch Wy 14643 (MOA51) m7 m14 m2 1.44 2.22 2.22 1.7 1.91 2.11 1.11 1.45 1.13	Bezafibra (MOA49 8 ft/7 ft/14 ft 7 2.12 2.94 2 1 1.34 1.13 1 7 2.2 2.45 2	Mecoprop- (MOA1) fh7 fh14 fh28 2.53 2.56 4.78 5.31 1.63 1.28 1.63 1.76 2.47 1.92 2.0 1.79	Dichlorprop- p (MOA1) fb7 fb14 fb28 2.0 3.09 3.11 1.79 2.25 2.58 2.62 2.41 2.04	Benzylbutyl Phthalate (MOA6) m7 m14/m28 1.82 2.06 2.42 1.44 1.5 1.78 1.15 1.48 2.43	Diethyl fh7 1.45 1.97 1.35	lhexylpl (MOA58 fh14 1.59 1.6 1.52	thalate) fh28 1.47 1.6 1.2
elect All Select I v up v up v up v up v	ShowAll Metab etabolites) (Fin None Pantotheni Coenzyme Glycerol, li Palmitic ac	collites) (Export Tal d Compounds) (Sa cacid Q9 old fraction id (C16:0)	MET_CHEM_ID 18000225 18000225 28000002 28000003 1	Clofibrate (MOA50) fh7 fh14 fh28 1.07 1.75 1.22 .86 1.64 2.55 .39 1.64 4.99 1.05 1.38 2.31	Eenofibrate (MOA48) fh7 fh14 fh28 2.36 2.75 3.27 1.51 1.72 1.86 2.35 2.47 2.19 1.72 1.39 1.42	Wy 14643 (MOA51) fh7 fh14 fh24 1.44 2.22 2.21 1.7 1.91 2.11 1.11 1.45 1.13	Bezafibra (MOA49 6 fh7 fh14 ff 7 2.12 2.94 2 1 1.34 1.13 1 7 2.2 2.45 2 2 1.73 1.8 1	Me Opposite Opposite <thopposite< th=""> Opposite Op</thopposite<>	Dichlorprop- p (MOA1) fh7 fh14 fh28 2.0 3.09 3.11 1.79 2.25 2.58 2.62 2.41 2.04 2.53 2.69 1.57	Benzylbutyl Phthalate (MOA6) fh7 fh14 fh28 1.82 2.06 2.42 1.44 1.5 1.78 1.15 1.48 2.43 1.48 1.79 1.94	Diethyl fh7 1.45 1.97 1.35 1.66	Ihexylpl (MOA58 fh14 1.59 1.6 1.52 1.5	nthalate) fh28 1.47 1.6 1.2 1.34
ShowSelected Me elect All Select I v up v v up v v up v v up v	ShowAll Metab etabolites) (Fin None Pantotheni Coenzyme Glycerol, li Palmitic ac gamma-Lin	collites) (Export Tal d Compounds) (Sa cacid Q9 cid fraction id (C16:0) olenic acid (C18:c	MET_CHEM_ID 18000225 18000281 28000002 28000003 2800003 28000077 280004777 2800047777 280004777 2800047777 2800047777 280007	Clofibrate (MOA50) fh7 fh14 fh28 1.07 175 1.22 38 1.64 2.55 .39 1.64 4.99 1.05 1.38 2.31 2.04 1.88 7.0	Enofibrate (MOA48) fh7 fh14 fh28 2.36 2.75 3.27 1.51 1.72 1.86 2.35 2.47 2.19 1.72 1.39 1.42 3.64 2.83 2.12	Wy 14643 (MOA51) m7 m14 m23 1.44 2.22 2.23 1.7 1.91 2.11 1.11 1.45 1.13 1.21 1.31 1.03 2.08 2.12 1.9	Bezafibra (MOA49 6 fh7 fh14 ff 2.12 2.94 2 1 1.34 1.13 1 7 2.2 2.45 2 2 1.73 1.8 1 4 3.03 2.98 2	Me Optop Op	Dichlorprop- p (MOA1) fh7 fh14 fh28 2.0 3.09 3.11 1.79 2.25 2.58 2.62 2.41 2.04 2.53 2.69 1.57 6.58 6.35 3.44	Benzylbutyl Phthalate (MOA6) fn7 fh14 fh28 1.82 2.06 2.42 1.44 1.5 1.78 1.15 1.48 2.43 1.48 1.79 1.94 1.98 1.64 2.08	Diethyl fh7 1.45 1.97 1.35 1.66 1.05	Ihexylpl (MOA58 fh14 1.59 1.6 1.52 1.5 1.44	thalate fh28 1.47 1.6 1.2 1.34 1.22
ShowSelected Me elect All Select I v up v v up v v up v v up v v up v v up v	ShowAll Metab etabolites) (Fin None Pantotheni Coenzyme Glycerol, li Palmitic ac gamma-Lin 16-Methylh	colites Export Tal d Compounds Sa a acid Q9 oid fraction id (C16:0) olenic acid (C18:c eptadecanoic acid	MET_CHEM_ID 1800025 1800025 1800025 2800002 2800003 28000477 28000477 28000478 0 28000478 0 0 0 0 0 0 0 0 0 0 0 0 0	Clofibrate (MOA50) 67 fn14 (n28 1.07 1.75 1.22 1.86 1.64 2.55 1.39 1.64 4.99 1.05 1.38 2.31 2.04 1.88 7.0 3.55 0.75 0.75	Enofibrate (MOA48) fh7 fh14 fh28 2.36 2.75 3.27 1.51 1.72 1.86 2.35 2.47 2.19 1.72 1.39 1.42 3.64 2.83 2.12 0.59 0.55 0.59	Wy 14643 (MOA51) m7 fh14 1.44 2.22 1.7 1.91 1.11 1.45 1.21 1.31 1.20 2.12 0.67 0.85	Bezafibra (MOA49 6 fh7 fh14 fh 7 2.12 2.94 2 1 1.34 1.13 1 7 2.2 2.45 2 2 1.73 1.8 1 4 3.03 2.98 2 6 0.61 0.59 0	Mecoprop-p (MOA1) hr2 fh14 fh28 1.28 fh27 fh14 fh28 2.53 2.56 4.78 5.31 1.63 1.28 1.63 1.76 2.47 1.92 2.0 1.79 1.92 1.56 1.9 1.99 2.99 3.34 3.62 4.14 0.54 0.54 0.51 0.56	Dichlorprop- p (MOA1) fh7 fh14 fh28 2.0 3.09 3.11 1.79 2.25 2.58 2.62 2.41 2.04 2.53 2.69 1.57 6.58 6.35 3.44 0.62 0.49 0.62	Benzylbutyl Phthalate (MOA6) fh7 fh14 fh28 1.82 2.06 2.42 1.44 1.5 1.78 1.15 1.48 2.43 1.48 1.79 1.94 1.98 1.64 2.08 0.55 0.66 0.85	Diethyl fh7 1.45 1.97 1.35 1.66 1.05 0.59	ihexylpi (MOA58 fh14 1.59 1.6 1.52 1.5 1.44 0.68	fh28 1.47 1.6 1.2 1.34 1.22 0.63
ShowSelected Me elect All Select I v up v v up v	ShowAll Metab etabolites) (Fin None Pantotheni Coenzyme Glycerol, li Palmitic ac gamma-Lin 16-Methylh 17-Methylo	collites) (Export Tail d Compounds) (Sa cacid Q9 aid fraction id (C16:0) olenic acid (C18:c eptadecanoic acid ctadecanoic acid	MET_CHEM_ID MET_C	Legend (MOAS) 177 114 1128 1.07 1.75 1.22 1.86 1.64 2.55 1.39 1.64 4.99 1.05 1.38 2.31 2.04 1.88 7.0 1.55 0.75 0.75 1.48 0.57 0.77	E decreased n (MOA48) fh7 fh14 fh28 2.36 2.75 3.27 1.51 1.72 1.86 2.35 2.47 2.19 1.72 1.39 1.42 3.64 2.83 2.12 0.59 0.55 0.59 0.5 0.57 0.5	Wy 14643 (MOA51) fh7 fh14 fh23 1.44 2.22 2.21 1.7 1.91 2.11 1.11 1.45 1.12 1.21 1.31 1.02 0.67 0.85 0.56 0.63 0.6 0.43	Bezafibra (MOA49 8 fh7 1 1.34 1 1.34 2 2.2 2 2.45 2 1.73 4 3.03 0.61 0.59 7 0.54	Mecoprop-p (MOA1) hr2 fh1 fh28 state state state 1.63 1.28 1.63 1.76 2.47 1.92 2.0 1.79 1.92 1.56 1.9 1.99 2.99 3.34 3.62 4.14 1.54 0.54 0.51 0.55	Dichlorprop- p (MOA1) fh7 fh14 fh28 2.0 3.09 3.11 1.79 2.25 2.58 2.62 2.41 2.04 2.53 2.69 1.57 6.58 6.35 3.44 0.62 0.49 0.62 0.53 0.57 0.67	Benzylbutyl Phthalate (MOA6) fh7 fh2 1.82 1.82 1.44 1.5 1.44 1.48 1.48 1.48 1.49 1.48 1.79 1.48 0.55 0.66 0.78 0.64	Diethyl fh7 1.45 1.97 1.35 1.66 1.05 0.59 0.76	Inexylpi (MOA58 fh14 1.59 1.6 1.52 1.5 1.44 0.68 0.62	thalate fh28 1.47 1.6 1.2 1.34 1.22 0.63 0.78
ShowSelected Me elect All Select I v up v	ShowAll Metal etabolites Fin None Pantotheni Coenzyme Glycerol, li Palmitic ac gamma-Lin 15-Methylh 17-Methylo	colites) Export Tail d Compounds) Sa c acid G g aid fraction id (C16:0) olenic acid (C18:c eptadecanoic acid ctadecanoic acid ctadecanoic acid	MET_CHEM_ID MET_C	Legend Interpretation Int	Fenofibrate (MOA48) fh7 fh14 fh28 2.36 2.75 3.27 1.51 1.72 1.86 2.35 2.47 2.19 1.72 1.39 1.42 3.64 2.83 2.12 0.59 0.55 0.59 0.5 0.57 0.5 1.46 1.67 1.61	Wy 14643 (MOA51) m7 fh14 fh23 1.44 2.22 2.23 1.7 1.91 2.11 1.11 1.45 1.13 1.21 1.31 1.03 2.08 2.12 1.93 0.67 0.85 0.65 0.63 0.6 0.43 1.64 1.5 1.16	Bezafibra (MOA49 8 ftn7 1 1.34 1 1.34 2 2.2 2 1.73 4 3.03 5 0.61 7 0.54 1 1.34	Mecoprop-p (MOA1) hr7 fh14 fh28 fh7 fh14 fh28 sc3 2.56 4.78 5.31 1.63 1.28 1.63 1.76 1.92 2.0 1.79 1.92 1.56 1.9 1.99 2.99 3.34 3.62 4.14 0.54 0.51 0.55 0.39 0.36 0.45 1.52 1.61 1.45 1.44 1.44 1.44	Dichlorprop p (MOA1) 1.07 fh14 fh28 2.0 3.09 3.11 1.79 2.25 2.58 2.62 2.41 2.04 2.63 2.69 1.57 6.58 6.35 3.44 0.62 0.49 0.62 0.53 0.57 0.67 1.44 1.81 1.89	Benzylbutyl Phthalate (MOA6) 182 2.06 2.42 1.44 1.5 1.78 1.15 1.48 2.43 1.48 1.79 1.94 1.98 1.64 2.08 0.55 0.66 0.65 0.78 0.64 0.69 1.2 1.53 1.74	Diethyl fh7 1.45 1.97 1.35 1.66 1.05 0.59 0.76 1.59	he×ylpl (MOA58 fh14 1.59 1.6 1.52 1.5 1.44 0.68 0.62 1.23	thalate fh28 1.47 1.6 1.2 1.34 1.22 0.63 0.78 1.12
ShowSelected Me elect All Select I elect I elect All Select I elect I	ShowAll Metal etabolites Fin None Pantotheni Coenzyme Glycerol, li gamma-Lin gamma-Lin 16-Methylh 17-Methylo Threonic ad	evolites Export Tail d Compounds Sa c acid aci	MET_CHEM_ID MET_CH	Legend (MOA50) fir14 M28 1.07 1.75 1.22 1.66 1.64 2.55 1.05 1.64 2.93 1.05 1.68 7.0 0.55 0.57 0.77 1.23 1.3 1.3 1.87 0.86 1.0	E decreased n Fenofibrate (MOA48) 167 fn14 fn28 2.36 2.75 3.27 1.51 1.72 1.86 2.35 2.47 2.19 1.72 1.39 1.42 3.64 2.83 2.12 0.59 0.55 0.59 0.5 0.57 0.55 1.46 1.67 1.61 0.79 0.79 0.87	Wy 14643 (MOA51) fh7 fh14 fh24 1.44 2.22 2.23 1.7 1.91 2.11 1.11 1.45 1.13 1.21 1.31 1.02 2.08 2.12 1.94 0.67 0.85 0.64 1.64 1.5 1.18 0.69 0.7 0.75	Bezafibr (MOA49) 8 fh7 91 1.34 1 1.34 1 1.34 1 1.34 1 1.34 2 1.73 1.84 1.03 2 1.73 3 0.61 0.61 0.59 3 1.62 9 0.78	Me COPTO 11/2 fh7 fh14 fh28 11/2 fh7 fh14 fh28 2.53 2.56 4.78 5.31 1.63 1.28 1.63 1.76 2.47 1.92 2.0 1.79 1.92 1.56 1.9 1.99 2.99 3.34 3.62 4.14 0.54 0.51 0.55 0.55 1.55 1.39 0.35 0.45 1.54 1.51 1.45 1.44 1.52 1.61 1.45 1.44 1.82 0.7 0.71 0.7	Dichlorprop p (MOA1) 1.07 1014 1028 2.0 3.09 3.11 1.79 2.25 2.58 2.52 2.41 2.04 2.53 2.69 1.57 6.58 6.35 3.44 0.62 0.49 0.62 0.53 0.57 0.67 1.44 1.81 1.89 0.67 0.88 0.71	Benzylbutyl Phthalate (MOA6) 182 2.06 2.42 1.82 2.06 2.42 1.44 1.5 1.78 1.15 1.48 2.43 1.48 1.79 1.94 1.98 1.64 2.08 0.55 0.66 0.55 0.78 0.64 0.69 1.2 1.53 1.74 0.77 0.63 0.79	Diethyl 1.45 1.97 1.35 1.66 1.05 0.76 1.59 0.86	(MOA58 fh14 1.59 1.6 1.52 1.5 1.44 0.68 0.62 1.23 0.84	thalate fh28 1.47 1.6 1.2 1.34 1.22 0.63 0.78 1.12 0.81
ShowSelected Me elect All Select I elect All Select I elect Up ~ v down ~ v down ~ v down ~	ShowAll Metate etabolites Fin None Pantotheni Coenzyme Glycerol, li Palmitic ac gamma-Lin 16-Methylh 17-Methylh Cytosine (2 Phosphatic	content Export Tail d Compounds Sa d Compounds Sa c acid Sa c acid Sa oid fraction Sa id (C16:0) Sa olenic acid (C18:c) Sa eptadecanoic acid Sa ctadecanoic acid Sa j) ylcholine No 04 ((2)	MET_CHEM_ID 18000225 18000226 18000226 28000003 28000477 28000478 28000478 3800083 3800083 38000841 6800020 0	Legend (MOA50) MT 614 628 1.07 1.75 1.22 1.86 1.64 2.55 1.39 1.64 4.99 1.05 1.38 2.31 2.04 1.88 7.0 1.55 0.75 0.75 0.48 0.57 0.75 1.23 1.3 1.3 1.87 0.86 1.0 1.67 0.59 0.68	E decreased n (MOA48) 67 fh14 fh28 2.36 2.75 3.27 1.51 1.72 1.86 2.35 2.47 2.19 1.72 1.39 1.42 3.64 2.83 2.12 0.59 0.55 0.59 0.5 0.57 0.5 1.46 1.67 1.61 0.79 0.79 0.87 0.71 0.64 0.76	Significant ch Wy 14643 (MOA51) fb7 fb14 fb24 1.44 2.22 2.21 1.7 1.91 2.11 1.21 1.31 1.02 2.08 2.12 1.93 0.67 0.85 0.56 0.63 0.6 0.43 1.64 1.5 1.14 0.69 0.7 0.75 0.84 0.8 1.08	Bezafibr Bezafibr MOA49 Bi fb7 fb12 1.34 1.34 2.12 2.45 1.34 3.03 6.61 0.54 0.54 0.54 1.54 1.54 0.78 0.74 0.75	Mecoprophysical Mecoprophysical h7 fh14 fh28 253 2.56 4.78 5.31 1.63 1.28 1.63 1.76 2.47 1.92 2.0 1.79 1.92 1.56 1.9 1.99 2.93 3.34 3.62 4.14 0.54 0.51 0.56 0.39 0.35 1.52 1.61 1.45 1.44 0.82 0.7 0.71 0.7 3.58 0.62 1.03 0.67	Dichlorprop p (MOA1) 1 fh7 fh14 fh28 2.0 3.09 3.11 1 79 2.25 2.58 2.62 2.41 2.04 2.53 2.69 1.57 6.58 6.35 3.44 0.62 0.49 0.62 0.53 0.57 0.67 1.44 1.81 1.89 0.67 0.88 0.71 1.19 0.94 0.8	Benzylbutyl Phthalate (MOA6) fh7 fh14 fh28 1.82 2.06 2.42 1.44 1.5 1.78 1.15 1.48 2.43 1.48 1.79 1.94 1.98 1.64 2.08 0.56 0.66 0.69 0.77 0.63 0.79 0.71 1.2 0.84	Diethyl fh7 1.45 1.97 1.35 1.66 1.05 0.59 0.59 0.59 0.59 0.59 0.86 0.75	hexylpi (MOA58 fh14 1.59 1.6 1.52 1.5 1.44 0.68 0.62 1.23 0.84 0.72	fh28 1.47 1.6 1.2 1.34 1.22 0.63 0.78 1.12 0.81 0.79

Toxicology | Yield | release notes | preferences | help | logout

Copyright (C) Metanomics 2005-2008. Version 3.2 (4076) about MetaMap

Thyroid: Direct Effect: ETU & PTU

001001		100					Eth	ylenethic (MOA58	ourea	6-Pr	opyl-2-thio (MOA24)	uracil
Select	Directi	on	Method	Grade	Metabolite	MET_CHEM_ID	mh7	mh14	, mh28	mh7	mh14	mh28
	up	~	LC lipid	SQ	alpha-Tocopherol	18000217	1.74	1.35	1.5	1.04	1.27	1.12
	down	~	LC lipid	SQ	18-Hydroxycorticosterone	18000285	1.0	0.73	<mark>0.35</mark>	1.46	<mark>0.45</mark>	0.54
	down	~	LC lipid	SQ	18-Hydroxycorticosterone	18000288	1.01	0.59	0.33	1.53	<mark>0.44</mark>	<mark>0.46</mark>
	down	*	LC polar	SQ	3-Hydroxybutyric acid	18000293	1.08	<mark>0.8</mark>	0.74	1.0	<mark>0.81</mark>	0.77
	down	~	LC polar	SQ	Thyroxine	18000309	0.28	0.28	0.71	0.07	0.07	<mark>0.08</mark>
	up	~	GC lipid	SQ	alpha-Tocopherol	28000018	2.59	2.52	3.26	1.18	<mark>1.18</mark>	1.14
	up	~	GC lipid	SQ	Cholesterol	28000019	1.97	1.61	2.28	1.3	1.0	1.01
	up	~	GC lipid	SQ	Lignoceric acid (C24:0)	28000052	2.04	1.56	1.98	1.29	1.22	1.2
	up	~	GC lipid	SQ	Campesterol	28000053	1.67	1.39	1.78	1.04	1.19	1.34
	up	~	GC lipid	SQ	Behenic acid (C22:0)	28000152	2.04	1.74	2.04	1.07	1.01	1.44
	up	~	GC lipid	SQ	Nervonic acid (C24:1)	28000159	2.07	1.61	2.35	1.03	1.02	1.21
	down	*	GC lipid	SQ	16-Methylheptadecanoic acid	28000478	<mark>0.73</mark>	<mark>0.84</mark>	0.77	<mark>0.85</mark>	0.61	0.5
	up	~	GC lipid	SQ	putative Eicosatrienoic acid ME (C20:3 ME)	28000482	3.87	2.09	3.01	1.0	1.45	1.47
	up	*	GC lipid	NM	Sphingolipids	28000489	2.77	2.28	3.24	1.52	1.44	1.88
	up	~	GC lipid	NM	Sphingolipids	28000491	2.42	1.94	2.03	1.34	1.29	1.5
	up	*	GC lipid	NM	Sphingolipids	28000494	2.75	2.59	2.76	1.5	1.39	1.91
	up	~	GC lipid	SQ	Sphingolipids	28000495	2.3	2.24	2.08	1.46	1.32	1.47
	up	*	GC lipid	SQ	Cholesterol	28000503	2.49	1.99	2.5	1.27	1.34	1.16
	up	~	GC lipid	SQ	Cholesterol	28000504	1.52	2.07	2.5	1.3	1.03	1.16
	down	~	GC polar	SQ	Citrate	38000012	<mark>0.93</mark>	0.79	<mark>0.64</mark>	<mark>0.89</mark>	0.74	0.64
	up	*	GC polar	SQ	Tyrosine	38000160	1.17	1.2	1.04	1.03	1.17	1.21
	down	*	GC polar	SQ	3-Hydroxybutyric acid	38000393	1.15	0.67	0.54	0.89	<mark>0.88</mark>	0.69

Thyroid:Direct EffectFound:Methimazole & Metiram

							Ethylenethiourea (MOA58)			6-Pr	opyl-2-thio (MOA24)	uracil	М	ethimaz (MOA51		m 0)		
Select	Direct	tion	Method	Grade	Metabolite	MET_CHEM_ID	mh7	mh14	mh28	mh7	mh14	mh28	mh7	mh14	mh28	mh7	mh14	mh28
	up	~	LC lipid	SQ	alpha-Tocopherol	18000217	1.74	1.35	1.5	1.04	1.27	1.12	2.26	3.65	2.04	1.41	NA	NA
	down	~	LC lipid	SQ	18-Hydroxycorticosterone	18000285	1.0	0.73	0.35	1.46	0.45	0.54	0.38	0.82	0.24	0.24	NA	NA
	down	~	LC lipid	SQ	18-Hydroxycorticosterone	18000288	1.01	0.59	0.33	1.53	0.44	<mark>0.46</mark>	<mark>0.48</mark>	0.89	0.24	0.24	NA	NA
	down	~	LC polar	SQ	3-Hydroxybutyric acid	18000293	1.08	<mark>0.8</mark>	0.74	1.0	0.81	0.77	0.77	0.53	<mark>0.46</mark>	0.77	NA	NA
	down	*	LC polar	SQ	Thyroxine	18000309	<mark>0.28</mark>	0.28	0.71	0.07	0.07	<mark>0.08</mark>	0 <mark>.12</mark>	0.05	0.02	<mark>0.49</mark>	NA	NA
	up	*	GC lipid	SQ	alpha-Tocopherol	28000018	2.59	2.52	3.26	1.18	1.18	1.14	1.76	2.66	2.18	1.56	NA	NA
	up	~	GC lipid	SQ	Cholesterol	28000019	1.97	1.61	2.28	1.3	1.0	1.01	1.69	1.93	1.56	1.47	NA	NA
	up	~	GC lipid	SQ	Lignoceric acid (C24:0)	28000052	2.04	1.56	1.98	1.29	1.22	1.2	2.12	2.82	2.16	1.43	NA	NA
	up	~	GC lipid	SQ	Campesterol	28000053	1.67	1.39	1.78	1.04	1.19	1.34	1.43	1.6	1.46	1.09	NA	NA
	up	~	GC lipid	SQ	Behenic acid (C22:0)	28000152	2.04	1.74	2.04	1.07	1.01	1.44	2.02	3.03	3.01	1.38	NA	NA
	up	~	GC lipid	SQ	Nervonic acid (C24:1)	28000159	2.07	1.61	2.35	1.03	1.02	1.21	2.59	3.0	2.23	1.69	NA	NA
	down	~	GC lipid	SQ	16-Methylheptadecanoic acid	28000478	<mark>0.73</mark>	<mark>0.84</mark>	0.77	0.85	0.61	0.5	1.21	0.73	0.47	<mark>0.86</mark>	NA	NA
	up	~	GC lipid	SQ	putative Eicosatrienoic acid ME (C20:3 ME)	28000482	3.87	2.09	3.01	1.0	1.45	1.47	2.38	3.22	2.02	1.3	NA	NA
	up	~	GC lipid	NM	Sphingolipids	28000489	2.77	2.28	3.24	1.52	1.44	1.88	3.47	3.85	4.55	1.77	NA	NA
	up	~	GC lipid	NM	Sphingolipids	28000491	2.42	1.94	2.03	1.34	1.29	1.5	3.02	3.78	4.3	1.6	NA	NA
	up	~	GC lipid	NM	Sphingolipids	28000494	2.75	2.59	2.76	1.5	1.39	1.91	3.57	4.15	3.4	1.78	NA	NA
	up	~	GC lipid	SQ	Sphingolipids	28000495	2.3	2.24	2.08	1.46	1.32	1.47	2.92	3.71	3.47	1.63	NA	NA
	up	~	GC lipid	SQ	Cholesterol	28000503	2.49	1.99	2.5	1.27	1.34	1.16	1.86	2.33	1.65	1.29	NA	NA
	up	~	GC lipid	SQ	Cholesterol	28000504	1.52	2.07	2.5	1.3	1.03	1.16	1.92	2.12	2.25	1.41	NA	NA
	down	~	GC polar	SQ	Citrate	38000012	0.93	<mark>0.79</mark>	<mark>0.64</mark>	<mark>0.89</mark>	<mark>0.74</mark>	<mark>0.64</mark>	0.69	0.69	0.73	0.88	NA	NA
	up	~	GC polar	SQ	Tyrosine	38000160	1.17	1.2	1.04	1.03	1.17	1.21	1.3	1.44	1.24	1.09	NA	NA
	down	~	GC polar	SQ	3-Hydroxybutyric acid	38000393	1.15	0.67	0.54	0.89	<mark>0.88</mark>	0.69	0.74	0.47	<mark>0.48</mark>	0.52	NA	NA
		_	e e perm							0.00		0.00		0. 11				-

Thyroid direct: L-Thyroxine Inverse pattern

						Ethylenethiourea (MOA58)			6-Pr	ouracil)	М	cole I)	 (Metira MOA2	m 0)	L	line 9)			
ti	on I	lethod	Grade	Metabolite	MET_CHEM_ID	mh7	mh14	mh28	mh7	mh14	mh28	mh7	mh14	mh28	mh7	mh14	mh28	mh7	mh14	mh28
	~ L	.C lipid	SQ	alpha-Tocopherol	18000217	1.74	1.35	1.5	1.04	1.27	1.12	2.26	3.65	2.04	1.41	NA	NA	<mark>0.73</mark>	0.88	0.93
ì	~ L	.C lipid	SQ	18-Hydroxycorticosterone	18000285	1.0	0.73	0.35	1.46	0.45	0.54	0.38	0.82	0.24	0.24	NA	NA	1.06	2.65	1.33
ì	~ L	.C lipid	SQ	18-Hydroxycorticosterone	18000288	1.01	0.59	0.33	1.53	<mark>0.44</mark>	<mark>0.46</mark>	0.48	0.89	0.24	0.24	NA	NA	0.86	2.71	1.09
h	~ L	.C polar	SQ	3-Hydroxybutyric acid	18000293	1.08	<mark>0.8</mark>	<mark>0.74</mark>	1.0	<mark>0.81</mark>	0.77	0.77	0.53	<mark>0.46</mark>	0.77	NA	NA	0.9	1.21	0.7
h	~ L	.C polar	SQ	Thyroxine	18000309	0.28	0.28	0.71	0.07	0.07	<mark>0.08</mark>	0.12	0.05	0.02	0.49	NA	NA	5.52	3.62	3.76
	~ (GC lipid	SQ	alpha-Tocophero!	28000018	2.59	2.52	3.26	1.18	1.18	1.14	1.76	2.66	2.18	1.56	NA	NA	1.01	0.85	0.75
	~ (GC lipid	SQ	Cholesterol	28000019	1.97	1.61	2.28	1.3	1.0	1.01	1.69	1.93	1.56	1.47	NA	NA	<mark>0.98</mark>	0.67	0.92
	~ (GC lipid	SQ	Lignoceric acid (C24:U)	28000052	2.04	1.56	1.98	1.29	1.22	1.2	2.12	2.82	2.16	1.43	NA	NA	<mark>0.78</mark>	<mark>0.68</mark>	<mark>0.9</mark>
	~ (GC lipid	SQ	Campesterol	28000053	1.67	1.39	1.78	1.04	1.19	1.34	1.43	1.6	1.46	1.09	NA	NA	1.21	<mark>0.83</mark>	0.91
	~ (GC lipid	SQ	Behenic acid (C22:0)	28000152	2.04	1.74	2.04	1.07	1.01	1.44	2.02	3.03	3.01	1.38	NA	NA	0.9	<mark>0.81</mark>	1.02
	~ (GC lipid	SQ	Nervonic acid (C24:1)	28000159	2.07	1.61	2.35	1.03	1.02	1.21	2.59	3.0	2.23	1.69	NA	NA	0.87	<mark>0.66</mark>	<mark>0.89</mark>
h	~ (GC lipid	SQ	16-Methylheptadecanoic acid	28000478	<mark>0.73</mark>	<mark>0.84</mark>	0.77	0.85	0.61	<mark>0.5</mark>	1.21	0.73	0.47	<mark>0.86</mark>	NA	NA	1.1	0.83	1.08
	~ (GC lipid	SQ	putative Eicosa	28000482	3.87	2.09	3.01	1.0	1.45	1.47	2.38	3.22	2.02	1.3	NA	NA	1.0	<mark>0.86</mark>	1.08
	~ (GC lipid	NM	Sphingolipids	28000489	2.77	2.28	3.24	1.52	1.44	1.88	3.47	3.85	4.55	1.77	NA	NA	0.79	0.55	0.81
	~ (GC lipid	NM	Sphingolipids	28000491	2.42	1.94	2.03	1.34	1.29	1.5	3.02	3.78	4.3	1.6	NA	NA	0.79	<mark>0.68</mark>	0.91
	~ (GC lipid	NM	Sphingolipids	28000494	2.75	2.59	2.76	1.5	1.39	1.91	3.57	4.15	3.4	1.78	NA	NA	0.79	<mark>0.45</mark>	0.82
	~ (GC lipid	SQ	Sphingolipids	28000495	2.3	2.24	2.08	1.46	1.32	1.47	2.92	3.71	3.47	1.63	NA	NA	0.79	<mark>0.58</mark>	0.82
	~ (GC lipid	SQ	Cholesterol	28000503	2.49	1.99	2.5	1.27	1.34	1.16	1.86	2.33	1.65	1.29	NA	NA	0.87	<mark>0.58</mark>	0.64
	~ (GC lipid	SQ	Cholesterol	28000504	1.52	2.07	2.5	1.3	1.03	1.16	1.92	2.12	2.25	1.41	NA	NA	0.85	<mark>0.66</mark>	0.83
h	~ (GC polar	SQ	Citrate	38000012	0.93	0.79	<mark>0.64</mark>	0.89	0.74	0.64	0.69	0.69	0.73	<mark>0.88</mark>	NA	NA	1.06	1.12	1.41
	~ (GC polar	SQ	Tyrosine	38000160	1.17	1.2	1.04	1.03	1.17	1.21	1.3	1.44	1.24	1.09	NA	NA	0.99	1.01	1.13
5	v c	C nolor	90	3 Hudrovuhuturia said	38000303	1.15	0.67	0.54	n 9a	<mark>n 99</mark>	n ca	0.74	0.47	0.49	0.50	NLA	NIA	1.05	1.60	1.01

MetaMap®Tox Case Study

Thyroid Direct/Indirect Effects

Objectives

Applying the unique strengths of MetaMap®Tox for drug development

Investigate the anti-arrhythmic drug **amiodarone**

Anticipate what adverse effects it might have in addition to those identified through standard safety assessment measures

With respect to the thyroid: explore possible **mechanisms** responsible for these adverse effects

MetaMap®Tox Case Study Thyroid Indirect Effects

Metabolite Profile vs. "Thyroid Indirect"

			Submit parameters (Res	set parameters															
Find I	/letabolite	s) (Sł	nowAll Metabolites Export T	able to Excel		Le	gend:	decre	<mark>ased</mark> n	o signific	cant cha	anges <mark>incr</mark>	eased						
(Sho	wSelected	Metaboli	tes) (Find Compounds) (S	Save Metabolite I	_ist)														
Select	All Sele	ct None			Save	Metabolit	e List												
								2-			4054								
					Amic (M)	odarone OA33)	Meth (MOA1	iazoie 6)	Arocio (MO)	A61)	Beta-Iol (MOA	none (4)	MC (MC	A11)				
Selec	Direction	Anchor	Metabolite	MET_CHEM_ID	fh7 f	h14 fh28	fh7	fh14	fh28	fh7 fh'	14 fh28	fh7 fh14	fh28	fh7 fh	14 fh28	fl			
	up 🚩		Palmitic acid (C16:0)		<mark>1.29</mark> 1	1.18 <mark>1.25</mark>	1.21	1.3	1.44	1.16 1.2	27 1.19	1.73 1.61	1.79	1.23 <mark>1</mark> .	19 1.08	1.	Т	hie d	lici
	up 🔽		Linoleic acid (C18:cis[9,12]2)		<mark>1.35</mark> 1	1.11 1.08	i <u>1.19</u>	1.27	1.21	1.34 1.3	34 1.54	1.83 1.81	2.0	1.33 1.	35 1.27	1.	1	ins u	13
	up 🔽		<u>Stearic acid (C18:0)</u>		1.27 1	1.25 1.28	0.99	1.02	1.17	1.34 1.5	54 1.91	1.92 1.91	2.03	1.71 1.	61 1.56	0.	ſ	patte	rn
	up 🚩		Arachidonic acid (C20:cis[5		1.46 1	1.37 1.41	1.04	1.2	1.36	1.25 1.4	48 1.53	2.08 1.94	2.29	1.76 1	.6 1.53	0.			
	up 🚩		Docosahexaenoic acid (C22:c		1.56 1	1.39 1.21	1.37	1.38	1.27	1.22 1.8	69 1.74	2.68 2.33	8 2.45	1.59 1	.4 1.33	1.	ć	altere	Эd
	up 🚩		Cholesterol, total		1.47	1.5 1.58	3 1.14	1.41	1.55	1.43 1.4	45 1.53	2.35 2.22	2.73	1.74 1.	47 1.47	1	,	with f	łha
	up 🚩		Glycerol phosphate, lipid f		1.41 1	1.32 <mark>1.42</mark>	1.21	1.29	1.42	1.31 1.6	58 1.89	2.47 2.0	2.69	1.64 1.	52 1.37	0.		WILLI	llic
	up 🚩		<u>Dodecanol</u>		1.81 1	1.72 1.25	1.02	1.11	1.18	1.32 <mark>1.1</mark>	13 1.25	1.71 1.52	2 1.64	1.24 1.	73 1.59	1.	,	enzv	me
	up 🚩		Heptadecanoic acid (C17:0)		1.28	1.16 1.15	5 1.18	1.18	1.41	<mark>1.42</mark> 1.0	D7 1.44	1.96 1.45	5 2.05	1.32 1.	44 1.22	0.			
	up 🚩		Eicosanoic acid (C20:0)		0.93 1	1.09 <mark>1.2</mark> 2	1.12	1.35	1.2	2.01 2.	6 1.49	2.3 2.0	2.42	1.78 1	07 1.65	0.		indire	ЭСІ
	up 🚩		myo-Inositol-2-phosphate, I		1.43 1	1.48 1.24	1.68	1.63	1.66	2.11 1.7	77 1.26	5.39 3.32	2 5.23	2.13 2.	36 1.9	1.			
	up 🚩		Behenic acid (C22:0)		<mark>1.36</mark> 1	1.16 <mark>1.47</mark>	1.35	1.27	1.36	1.71 1.5	55 1.25	2.65 2.71	3.02	1.83 1.	45 1.68	1			
	up 🚩		Phytosphingosine, total		1.32	1.3 1.49	1.28	1.66	1.91	1.84 2.2	29 1.96	2.24 2.02	2.64	1.49 1.	62 1.58	0.			
	up 🚩		Nervonic acid (C24:cis[15]1)		1.78 1	1.86 1.43	1.11	1.52	1.74	1.2 1.1	13 1.31	4.26 3.98	4.37	2.34 1.	77 2.08	1.			
	up 🚩		gamma-Linolenic acid (C18:c		<mark>1.56</mark> 1	1.26 <mark>1.3</mark>	0.83	1.55	1.96	1.62 1.3	34 1.37	2.55 3.08	3.02	1.24 1	69 1.43	0.			
	up 🚩		dihomo-gamma-Linolenic acid		1.41 1	1.08 <mark>1.18</mark>	0.88	1.42	1.26	1.71 1.5	56 2.35	2.49 2.5	2.39	1.7 1.	81 1.57	1.			
	up 🚩		<u>3-O-Methylsphingosine (Σ)</u>		1.6	1.8 1.72	1.5	1.63	1.94	1.22 2.	1 1.68	4.47 4.52	4.42	2.15 2.	05 2.19	1.			
	up 🚩		<u>threo-Sphingosine (Σ)</u>		1.34 1	1.52 1.45	5 1.33	1.62	1.76	1.32 1.5	59 1.72	3.31 3.42	3.76	2.0 1.	95 1.94	1.			
	up 🚩		<u>5-O-Methylsphingosine (Σ)</u>		1.51 1	1.91 1.64	1.38	1.62	1.79	1.26 2.3	31 1.58	4.84 4.39	4.41	2.63 2.	05 2.33	1.			
	up 🚩		<u>erythro-Sphingosine (Σ)</u>		1.52 1	1.71 1.48	1.38	1.61	1.68	1.16 1.9	91 <mark>1.37</mark>	3.77 3.68	3.51	2.22 1	81 2.19	1.			
	up 🚩		Cholesterol, total		1.91 1	1.54 1.75	5 1.0	1.33	1.61	1.38 <mark>1.</mark> 9	94 1.55	3.27 2.75	3.95	1.84 1.	77 1.55	1.			
	up 🚩		Cholesterol, total		1.67	1.6 1.7	1.19	1.36	1.54	1.46 1.	6 <mark>1.45</mark>	2.84 2.39	3.33	2.44 1.	82 1.97	1.			
	up 🗸		Cholesterol total		1.54	32 1 71	1 21	1 39	1.59	1.51.1.6	53 1 46	274254	3.02	2 04 1	58 1 62	1			

This display compares the pattern of metabolites with altered levels for Amiodarone with that of known liver enzyme inducers (i.e., an <u>indirect effect</u>)

Profile Comparison – ranking with reference compounds based on similarity of metabolite profiles

MetaMap®Tox Case Study Thyroid Direct Effects

Metabolite Profile vs. "Thyroid Direct"

				Submit parameters Reset	t parameters)										
Find I	vletabo	lites) (51	howAll Metabolites) (Export Tal	ble to Excel	Le	gend:	decrea	<mark>ased</mark> no si	gnificant c	hanges <mark>inc</mark>	reased			
Sho	wSelect	ted N	/letaboli	tes) (Find Compounds) (Sa	ave Metabolite List)										
Select	All S	elect	t None												This display compares the pattern
						An	niodaro (MOA33	one 8)	6-Pro	opyl-2-thio (MOA24	uracil	Me	ethimaz (MOA51	cole I)	of metabolites with altered levels
Selec	t Direct	tion	Ancho	r Metabolite	MET_CHEM_ID	fh7	fh14	fh28	fh7	fh14	fh28	fh7	fh14	fh28	for Amiodarone with that of
	down	۱ ۲		Thyroxine (T4)	18000309	3.35	0.93	1.45	0.66	0.12	0.35	0.22	0.26	0.1	drugs known to directly alter
	up	~		Docosahexaenoic acid (C22:c	28000015	1.56	1.39	1.21	1.27	1.11	0.83	2.07	1.37	1.24	thuroid function
	up	*		Tricosanoic acid (C23:0)	28000072	1.48	1.4	1.52	1.45	1.31	1.36	2.05	2.55	1.96	
	up	~		Behenic acid (C22:0)	28000152	1.36	1.16	1.47	1.33	1.28	1.2	2.17	2.72	2.01	
	up	*		<u>threo-Sphingosine (Σ)</u>	28000491	1.34	1.52	1.45	1.36	1.36	1.33	2.48	3.19	2.41	
	up	*		<u>5-O-Methylsphingosine (Σ)</u>	28000494	1.51	1.91	1.64	1.4	1.36	1.22	2.86	4.18	3.07	
	up	*		<u>erythro-Sphingosine (Σ)</u>	28000495	1.52	1.71	1.46	1.47	1.28	1.24	2.56	3.22	2.43	
	down	ו 🛩		<u>Pyruvate (Σ)</u>	3800002	<mark>0.68</mark>	<mark>0.6</mark>	<mark>0.53</mark>	<mark>0.88</mark>	0.65	0.77	<mark>0.6</mark>	0.56	<mark>0.78</mark>	
	up	*		<u>Glycine</u>	38000004	1.0	1.02	0.93	1.13	1.08	1.05	1.14	1.14	1.28	
	down	ו 🛩		<u>Citrate (Σ)</u>	38000012	0.96	<mark>0.89</mark>	<mark>0.82</mark>	<mark>0.87</mark>	0.69	0.66	0.83	<mark>0.76</mark>	0.84	
	down	ו 🛩		<u>Ketoleucine</u>	58000021	0.73	0.91	<mark>0.81</mark>	1.05	0.8	<mark>0.89</mark>	<mark>0.86</mark>	<mark>0.8</mark>	<mark>0.78</mark>	
	up	*		Lysophosphatidylcholine (C1	68000001	1.05	1.06	1.0	1.07	1.31	1.26	1.52	1.57	1.31	
	up	*		Sphingomyelin (d18:1,C16:0)	68000008	1.34	1.28	1.29	1.01	1.46	1.62	1.89	2.54	1.77	
	up	*		Phosphatidylcholine (C16:1,	68000010	1.32	1.36	1.06	1.49	1.37	1.09	1.89	2.4	2.21	
	up	*		Phosphatidylcholine (C18:2, (Σ)	68000011	1.18	1.18	1.31	1.2	1.17	1.17	1.39	1.25	1.33	
	up	*		Sphingomyelin (d18:1,C16:0)	68000046	1.2	1.15	1.09	1.26	1.33	1.29	1.45	1.44	1.31	
	up	*		Sphingomyelin (d18:1,C24:0)	68000054	1.21	1.11	1.35	1.22	1.42	1.08	1.54	1.8	1.63	
Sho	wSelect	ted N	/letaboli	tes) (Find Compounds) (Sa	ave Metabolite List										

Profile Comparison – ranking with reference compounds based on similarity of metabolite profiles

MetaMap®Tox Case Study Thyroid Direct Effects

Metabolite Profile vs. "Thyroid Direct"

				Submit parameters (Reset	parameters										
Find I	Metab	olites		howAll Metabolites (Export Tab	ole to Excel	Le	egend:	decrea	<mark>sed</mark> no sig	gnificant cl	hanges <mark>inc</mark> i	eased			
Sho	wSeleo	ted N	Metaboli	ites) (Find Compounds) (Sa	ve Metabolite List)										
Select	<u>All s</u>	Selec	t None												This display compares the pattern
						An	niodar (MOA3)	one 3)	6-Pro	pyl-2-thio (MOA24)	uracil	Me	ethimaz (MOA51	ole N	of metabolites with altered levels
Selec	t Dire	ction	Ancho	r Metabolite	MET_CHEM_ID	fh7	fh14	, fh28	fh7	fh14	fh28	fh7	fh14	, fh28	for Amiodarone with that of
	dow	n 💌		Thyroxine (T4)	18000309	3.35	0.93	(1.45)	0.66	0.12	0.35	0.22	0.26	0.1	druge known te directly elter
	up	~		Docosahexaenoic acid (C22:c	28000015	1.56	1.39	1.21	1.27	1.11	0.83	2.07	1.37	1.24	drugs known to <u>directly</u> alter
	up	*		Tricosanoic acid (C23:0)	28000072	1.48	1.4	1.52	1.45	1.31	1.36	2.05	2.55	1.96	thyroid function
	up	*		Behenic acid (C22:0)	28000152	1.36	1.16	1.47	1.33	1.28	1.2	2.17	2.72	2.01	
	up	~		<u>threo-Sphingosine (Σ)</u>	28000491	1.34	1.52	1.45	1.36	1.36	1.33	2.48	3.19	2.41	
	up	~		<u>5-O-Methylsphingosine (Σ)</u>	28000494	1.51	1.91	1.64	1.4	1.36	1.22	2.86	4.18	3.07	
	up	~		<u>erythro-Sphingosine (Σ)</u>	28000495	1.52	1.71	1.46	1.47	1.28	124	2.56	3.22	2.43	
	dow	n 💌		<u>Pyruvate (Σ)</u>	38000002	<mark>0.68</mark>	<mark>0.6</mark>	0.53	<mark>0.88</mark>	0.65	0.77	<mark>0.6</mark>	0.56	0.78	
	up	*		<u>Glycine</u>	38000004	1.0	1.02	0.93	1.13	1.08	1.05	14	1.14	1.28	
	dow	n 💌		<u>Citrate (Σ)</u>	38000012	0.96	<mark>0.89</mark>	0.82	0.87	0.69	<mark>0.66</mark>	0.83	0.76	0.84	
	dow	n 🔽		<u>Ketoleucine</u>	58000021	0.73	0.91	0.81	1.05	<mark>0.8</mark>	<mark>0.89</mark>	<mark>0.86</mark>	0.8	0.78	
	up	~		Lysophosphatidylcholine (C1	68000001	1.05	1.06	1.0	1.07	1.31	1.26	1.52	1.57	1.31	Note, however, that
	up	*		Sphingomyelin (d18:1,C16:0)	68000008	1.34	1.28	1.29	1.01	1.46	1.62	1.89	2.54	1.77	Amindarone increases
	up	*		Phosphatidylcholine (C16:1,	68000010	1.32	1.36	1.06	1.49	1.37	1.09	1.89	2.4	2.21	Annouarone <u>increases</u>
	up	~		Phosphatidylcholine (C18:2, (Σ)	68000011	1.18	1.18	1.31	1.2	1.17	1.17	1.39	1.25	1.33	the level of the thyroid
	up	*		Sphingomyelin (d18:1,C16:0)	68000046	1.2	1.15	1.09	1.26	1.33	1.29	1.45	1.44	1.31	
	up	~		Sphingomyelin (d18:1,C24:0)	68000054	1.21	1.11	1.35	1.22	1.42	1.08	1.54	1.8	1.63	normone thyroxine
Sho	wSeled	ted N	Metaboli	ites)(Find Compounds)(Sa	ve Metabolite List)										

Profile Comparison – ranking with reference compounds based on similarity of metabolite profiles

MetaMap®Tox Case Study

Thyroid Direct/Indirect Effects

Conclusions

→ Thus the clinical observations could have been anticipated using MetaMap®Tox

HPPD inhibitors: metabolites connection

													TaulUD	1
				BAS 6H HD			IVIESO HD			NIBC HD			торно	
Metabolite	Direction	Subclass	m7	m14	m28	m7	m14	m28	m7	m14	m28	m7	m14	m28
Threonine	up	Amino acids, neutral	1,16	1, <mark>20</mark>	1 ,50	1,55	1,55	1,49	1,36	1,51	1,54	1, <mark>2</mark> 9	1,17	1,35
Citrulline	down	Urea cycle and related	0,73	0,72	0,80	0,83	0,70	0,68	0,84	0,88	0,83	0,72	0,72	0,80
Phenylalanine	down	Amino acids, aromatic	0,79	0,90	0,82	0,82	0,87	0,87	0,78	0,77	1,02	0,86	0,79	0,89
Tyrosine	up	Amino acids, aromatic	<mark>8,9</mark> 8	7,65	10,02	22,33	22,69	24,73	25,56	27,19	28,32	23,03	21,00	26,70
4-Hydroxyphenylpyruvate	up	Tyrosine metabolism	31,22	34,78	25,05	535,51	313,40	NA	364,14	435,77	366,39	NA	995,98	1139,71
Threonine	up	Amino acids, neutral	1,23	1,19	1,39	1,47	1,35	1,42	1,33	1,52	1,47	1, <mark>3</mark> 2	1,19	1,38
5-Oxoproline	down	Amino acid metabolites	0,50	0,58	0,54	0,56	0,54	0,55	0,60	0,61	0,60	0,50	0,56	0,52
Lysine	up	Amino acids, basic	1,23	1 ,30	1,31	1,88	1,65	1,76	1,12	1,40	1,46	1,25	1,21	1,36
Glutamine	down	Amino acids, basic	0,41	0,44	0,41	0,44	0,43	0,43	0,55	0,57	0,58	0,41	0,44	0,41
Phenylalanine	down	Amino acids, aromatic	0,90	0,83	0,83	0,88	0,92	0,83	0,78	0,78	0,94	0,86	0,88	0,84
Tyrosine	up	Amino acids, aromatic	21,12	18,86	14,45	44,31	28,31	34,44	56,14	58,08	52,56	48,44	34,20	35,17

Profile Comparison: the entire metabolome of compound X is compared with that of 1000 other substances.

Here X = MCPA

	Pearson		Spearman		Norm. vectorprodcut			
	r	rank	r	rank	r	rank		
МСРА	1	1	1	1	1	1		
MCPA [Han:Rcc:WIST(SPF)]	0.821	2	0.831	2	0.775	3		
2,4-D (MOA22)	0.813	3	0.779	5	0.799	2		
MCPA [F-344/Crl]	0.807	4	0.764	6	0.735	5		
MCPA [Crl:Wl(Han)]	0.787	5	0.789	4	0.768	4		
MCPA [Crl:CD(R) (Sprague Dawly)]	0.784	6	0.791	3	0.733	6		
Dichlorprop-p	0.724	7	0.633	7	0.727	7		
Месоргор-р	0.709	8	0.624	8	0.706	8		
Pentachlorophenol	0.572	9	0.529	9	0.588	9		
Fenofibrate	0.556	10	0.422	15	0.535	10		
Месоргор-р	0.513	11	0.449	13	0.448	12		
Mecoprop-p FyAn	0.498	12	0.503	10	0.392	18		
Месоргор-р ҒуАу	0.49	13	0.389	20	0.453	11		
Probenecid	0.486	14	0.393	18	0.406	16		
Clofibrate	0.457	15	0.423	16	0.424	15		
Dicamba	0.454	16	0.486	12	0.434	14		

Read across

"... read-across is regarded as a technique for predicting endpoint information for one substance (target substance), by using data from the same endpoint from (an)other substance(s) (source substance(s))." Read-Across Assessment Framework (RAAF)

Case Study Phenoxy herbicides

- Target Substance: MCPP (Mecoprop-P)
- Source Substancen:
 2,4-DP (Dichlorprop-P)
 MCPA
- Structurally similar

is read-across possible ? which is the best source compound ?

Tanimoto scores

Case Study Phenoxy herbicides

Motabolito		2,4-DP			MCPA		MCPP			
metabolite	m7	m14	m28	m7	m14	m28	m7	m14	m28	
16-Methylheptadecanoic acid	0,24	0,31	0,41	0,23	0,33	0,18	0,23	0,25	0,21	
17-Methyloctadecanoic acid	0,22	0,34	0,30	0,29	0,35	0,20	0,16	0,24	0,16	
3-Hydroxyindole	3,70	3,54	3,94	1,95	2,58	2,93	2,59	2,56	1,94	
Arachidonic acid	0.20	0.20	0.41	0.07	0.42	0.26	0.00	0.24	0.26	
(C20:cis[5,8,11,14]4)	0,20	0,29	0,41	0,27	0,42	0,20	0,20	0,34	0,20	
Arginine	0,74	0,80	0,68	0,79	0,73	0,76	0,78	0,82	0,67	
Asparagine	0,62	0,74	0,66	0,75	0,59	0,74	0,74	0,72	0,72	
Cholesterylester C20:4	0,21	0,21	0,35	0,57	0,29	0,33	0,29	0,33	0,44	
Cytosine	0,44	0,62	0,69	0,63	0,60	0,60	0,73	0,73	0,66	
dihomo-gamma-Linolenic acid	2.67	2.40	2 70	2.07	6.24	0.24	2.59	2.00	2.44	
(C20:cis[8,11,14]3)	3,07	3,40	2,15	3,01	0,54	0,21	2,50	2,99	5,44	
Docosahexaenoic acid	0.15	0.21	0.02	0.15	0.20	0.00	0.17	0.24	0.15	
(C22:cis[4,7,10,13,16,19]6)	0,15	0,21	0,25	0,15	0,20	0,09	0,17	0,24	0,15	
Docosapentaenoic acid	0.02	0.04	0.40	0.45	0.05	0.40	0.00	0.00	0.04	
(C22:cis[7,10,13,16,19]5)	0,23	0,21	0,16	0,15	0,25	0,13	0,20	0,30	0,21	
Glucuronic acid	6,79	5,82	3,32	3,06	2,88	3,87	4,49	3,48	2,27	
Ketoleucine	0,57	0,62	0,62	0,39	0,26	0,34	0,72	0,79	0,57	
Lysine	0,44	0,52	0,56	0,40	0,30	0,33	0,57	0,60	0,50	
Lyso PE (C22:0) (putative)	0,24	0,21	0,28	0,38	0,28	0,29	0,20	0,20	0,18	
Lysophosphatidylcholine (C17:0)	0,43	0,35	0,35	0,59	0,54	0,35	0,43	0,34	0,24	
Lysophosphatidylcholine (C18:0)	0,77	0,78	0,83	0,81	0,83	0,73	0,75	0,78	0,77	
Lysophosphatidylcholine (C18:2)	1,28	1,47	1,05	1,54	1,40	1,39	1,38	1,40	1,24	
Methionine	0 76	0 73	0.81	0.66	0.59	0 64	0 72	0.82	0.80	
PC No 04 (putative)	0.28	0.37	0.30	0.42	0.44	0.36	0.30	0.40	0.34	
	0.74	0.74	0.77	0,00	0.00	0.00	0.00	0.07	0.04	
Phosphatidylcholine (C16:0,C20:4)	0,71	0,74	0,77	0,63	0,80	0,62	0,62	0,67	0,64	
Phosphatidylcholine (C16:0,C20:5)	1,48	1,51	1,19	1,73	1,82	2,11	1,43	1,20	1,22	
Phosphatidylcholine (C16:0,C22:6)	0,46	0,44	0,50	0,37	0,45	0,34	0,40	0,39	0,38	
Phosphatidylcholine (C18:0,C20:3)	0,53	0,46	0,53	0,49	0,82	0,48	0,37	0,47	0,38	
Phosphatidylcholine (C18:0,C20:4)	0,36	0,40	0,51	0,36	0,55	0,24	0,32	0,41	0,38	
Phosphatidylcholine (C18:0,C22:6)	0,34	0,38	0,41	0,30	0,30	0,18	0,29	0,33	0,30	
Phosphatidylcholine No 02	0,43	0,37	0,39	0,53	0,56	0,51	0,41	0,41	0,35	
Proline	0,69	0,72	0,77	0,63	0,51	0,52	0,66	0,72	0,64	
Pseudouridine	1,14	1,58	1,39	1,31	1,49	1,41	1,17	1,43	1,32	
Stearic acid (C18:0)	0,34	0,50	0,45	0,48	0,67	0,43	0,36	0,39	0,38	
TAG (putative)	0,64	0,54	0,46	0,35	0,59	0,36	0,32	0,35	0,40	
Threonine	0,56	0,68	0,82	0,68	0,63	0,69	0,65	0,68	0,77	
Tryptophan	0,21	0,24	0,45	0,20	0,19	0,18	0,33	0,50	0,49	
Unknown lipid (68000033)	0,58	0,56	0,67	0,45	0,49	0,42	0,57	0,54	0,56	
Unknown lipid (68000034)	0,37	0,30	0,38	0,31	0,26	0,22	0,39	0,38	0,33	
Unknown lipid (68000052)	0.31	0.33	0.48	0.31	0.42	0.22	0.29	0.31	0.29	

				_
Mode of action	2,4-DP	МСРА	МСРР	Match
Liver peroxisome proliferation				Weak Match
Liver fibrate phthalate and phenoxy				Missmatch
Reduced feed consumption	-			
Kidney inhibition weak org. acids				
Phthalates long chain				
Liver PPAR alpha agonist				
Liver oxidative stress		-		

- Very good overlap of metabolic profiles
- Common target organs:

Liver & Kidney

Case Study Phenoxy herbicides

a)	Matabalita		MCPP			2,4-DP		MCPA			
-	Wetabolite	m7	m14	m28	m7	m14	m28	m7	m14	m28	
	3-Indoxylsulfate	4,14	2,10	3,00	5,58	3,28	3,25	0,72	1,53	1,92	
	3-Methoxytyrosine	1,33	1,35	1,76	1,22	1,32	1,35	1,08	1,19	1,84	
	alpha-Tocopherol	0,56	0,65	0,59	0,70	0,63	0,68	0,93	1,09	0,98	
	beta-Sitosterol	0,24	0,34	0,23	0,37	0,30	0,31	0,65	1,03	0,74	
	Campesterol	0,30	0,36	0,23	0,31	0,29	0,32	0,68	1,04	0,99	
	Cholesterol, total	0,44	0,50	0,45	0,38	0,48	0,52	0,67	0,90	0,73	
	Ethanolamine plasmalogen (C39:4)	0,49	0,54	0,52	0,62	0,52	0,48	0,72	0,84	0,72	
	Galactose, lipid fraction	0,52	0,51	0,56	0,62	0,45	0,65	0,65	0,90	0,86	
	Indole-3-acetic acid	0,49	0,65	0,64	0,31	0,41	0,63	0,52	0,90	1,18	
	myo-Inositol, lipid fraction	0,56	0,55	0,56	0,45	0,53	0,61	0,54	0,92	0,76	
	myo-Inositol-2- phosphate, lipid fraction	0,18	0,22	0,25	0,27	0,21	0,32	0,30	0,61	0,52	
	Myristic acid (C14:0)	0,61	0,81	0,58	0,61	0,72	0,44	0,53	0,71	0,81	
	Pantothenic acid	3,57	4,54	4,58	2,45	3,34	3,73	0,92	1,41	0,86	
	Phosphate, lipid fraction	0,64	0,74	0,67	0,64	0,69	0,62	0,75	1,01	0,80	
	Sphingomyelin (d18:1,C16:0)	0,75	0,85	0,76	0,76	0,80	0,75	1,27	1,26	1,33	
	Threonic acid	1,40	1,07	1,36	1,78	1,34	1,63	0,99	1,14	1,13	
	Unknown lipid (28000473)	0,23	0,27	0,21	0,17	0,32	0,30	0,50	0,77	0,60	
	Metabolite		MCPP			MCPA			2,4-DP		
b)		m7	m14	m28	m7	m14	m28	m7	m14	m28	
	5-Oxoproline	0,98	0,81	0,78	0,66	0,69	0,69	0,97	0,99	1,03	
	Alanine	0,67	0,71	0,67	0,68	0,77	0,83	0,81	0,84	0,97	
	Deoxyribonucleic acids, total	0,81	0,82	0,70	0,94	0,87	0,77	0,50	0,78	0,72	
	Ethanolamine plasmalogen (C39:5)	0,52	0,56	0,50	0,57	0,67	0,60	0,69	0,29	0,60	
	Heptadecanoic acid (C17:0)	0,52	0,57	0,44	0,53	0,70	0,54	0,60	0,59	0,49	
	Isopalmitic acid (C16:0)	0,39	0,46	0,27	0,48	0,47	0,25	0,41	0,77	0,47	
	Tyrosine	0,74	0,89	0,76	0,87	0,77	0,87	0,89	0,94	0,89	
	Uracil	0,75	0,83	0,71	0,79	0,88	0,75	0,84	0,88	1,07	
	Uric acid	0.72	0.79	0.71	0.76	0.85	0.61	1.23	0.99	1.52	

Total Profile comparison:

Best Match with 2,4-DP

2,4-DP is the best read-across source substance

van Ravenzwaay, B., Sperber, S., Lemke, O., Fabian, E., Faulhammer, F., Kamp, H., Mellert, W., Strauss, V., Strigun, A., Peter, E., Spitzer, M., Walk, T., 2016. Metabolomics as read-across tool: A case study with phenoxy herbicides. Regul. Toxicol. Pharmacol. RTP 81, 288–304.

Example 2: HPPD-Inhibitors

Reference: Topramez			
Treatment	Pearson	orrelation	
neaunent	r	rank	
Topramezone, LD	0.895	1	
Coumarone 4, LD	0.892	2	
Nitisinone, HD	0.886	3	
Topramezone, 2 nd study, HD	0.886	4	4-Hy
Coumarone 3, LD	0.867	5	5-0x
Coumarone 4, HD	0.866	6	Citru
Coumarone 3, HD	0.858	7	Gluta
Nitisinone, LD	0.851	8	Glyci
Coumarone 1, LD	0.862	9	Lysir
Coumarone 2, LD	0.841	10	Meth

	Tanimoto similarity using MACCS keys													
		Coumarone 1	Coumarone 2	Nitisinone										
Coumaron	e 2	81.5%												
Nitisinon	e	48.1%	42.1%											
Topramezo	one	32.9%	27.8%	36.3%										
Metabolite	Coumarone 1	Coumarone 2	Topramezone	Nitisinone										
4-Hydroxyphenylpyruvate	148.43	209.61	317.76	293.51										
5-Oxoproline	0.60	0.63	0.59	0.55										
Citrulline	1.15	1.14	0.63	0.78										
Glutamine	0.69	0.59	0.41	0.46										
Glycine	1.34	2.22	1.30	1.33										
Lysine	1.24	1.32	1.33	1.43										
Methionine	1.26	1.19	1.14	1.28										
Serine	1.35	1.52	1.27	1.48										
Threonine	1.48	1.38	1.25	1.83										
Tyrosine	35.82	42.23	44.38	50.64										

Example 3: 2- and 4-Acetylaminofluorene

- strong liver enzyme inducer
- liver carcinogen
- immune suppressant
- bladder carcinogen

- slight liver enzyme inducer
- no liver carcinogen
- lipid accumulation in liver
- immune suppressant

Example 3: 2 and 4-Acetylaminofluorene Metabolome patterns

Metabolite profile compared to other liver enzyme inducers (and liver cell carcinogens)

Compound	2-Acet	tyle mir oflu	iorene	4-Acet	ylami ioi`u	iorene	Penta	achlorober	nzene	Cyproteron Acetate		
Compound	day 7	day 14	day 28	day 7	day 14	day 28	day 7	day 14	day 28	day 7	day 14	day 28
3-O-Methylsphingosine (d18:1)	1.56	1.36	1.45	1.16	1 33	1.33	1.42	1.76	1.74	3.26	1.75	2.49
4-Hydroxysphinganine (t18:0, Phytosphingosine)	0.86	1.28	1.25	1.10	1.46	1.23	1.10	1.40	1.32	1.99	1.47	1.96
5-O-Methylsphingosine (d18:1)	1.44	1.37	1.46	1.21	.47	1.40	1.46	1.92	1.66	2.98	2.13	2.57
Arachidonic acid (C20:cis[5,8,11,14]4)	1.18	1.20	1.14	1.22	1.22	1.28	1.27	1.89	1.50	1.40	0.98	1.89
Behenic acid (C22:0)	0.97	1.20	1.39	1.15	1.11	1.18	1.22	1.64	1.44	1.70	1.51	2.11
Cholesterol, total	1.19	1.32	1.01	1.31	1.25	1.38	1.23	1.64	1.62	1.82	1.62	2.51
Cholesterolester, total	1.14	1.12	1.08	1.10	1.13	1.09	1.45	2.08	1.60	1.15	1.07	1.10
dihomo-gamma-Linolenic acid (C20:cis[8,11,14]3)	1.44	1.22	1.27	1.08	1.20	1.12	2.19	3.89	2.94	3.24	2.41	1.85
Docosahexaenoic acid (C22:cis[4,7,10,13,16,19]6)	1.14	1.37	1.34	1.14	1.56	1.51	1.73	2.42	1.59	1.55	1.06	1.81
Dodecanol	1.03	1.23	1.38	1.50	1.02	1.18	1.21	2.11	1.58	1.84	1.43	1.60
Eicosanoic acid (C20:0)	1.03	1.17	1.19	0.96	1.45	1.27	1.37	2.61	1.90	1.57	1.34	1.65
erythro-Sphingosine (d18:1)	1.56	1.26	1.34	1.34	1.32	1.28	1.30	1.71	1.62	2.59	1.85	2.36
Galactose, lipid fraction	0.98	1.12	1.16	1.01	1.08	1.01	1.16	1.54	1.32	1.26	1.12	1.43
gamma-Linolenic acid (C18:cis[6,9,12]3)	1.14	1.59	1.58	1.34	1.23	1.45	1.73	4.42	3.02	2.91	1.15	2.14
Glycerol phosphate, lipid fraction	1.40	1.35	1.28	1.35	1.34	1.07	1.29	1.81	1.51	1.93	1.60	2.01
Glycerol, lipid fraction	1.62	1.97	1.47	1.20	1.26	1.17	2.40	8.03	3.33	2.23	1.37	1.68
Heptadecanoic acid (C17:0)	1.09	1.31	1.01	1.29	1.39	1.34	1.27	1.81	1.34	1.65	1.13	1.63
Lignoceric acid (C24:0)	1.07	1.22	1.24	1.12	1.19	1.14	1.39	1.60	1.75	1.26	1.00	2.02
Linoleic acid (C18:cis[9,12]2)	1.37	1.45	1.38	1.16	1.24	1.27	2.11	5.23	2.69	2.96	2.07	1.70
myo-Inositol-2-phosphate, lipid fraction	1.13	1.35	1.21	1.25	1.28	1.28	1.86	3.50	1.81	1.22	1.03	1.93
Nervonic acid (C24:cis[15]1)	1.19	1.43	1.46	1.56	1.21	1.33	0.97	1.55	1.46	5.05	2.51	4.42
Palmitic acid (C16:0)	1.29	1.37	1.42	1.21	1.16	1.25	1.59	3.46	1.86	2.19	1.82	2.09
Phosphate, lipid fraction	1.19	1.20	1.14	1.05	1.15	1.32	1.29	1.71	1.33	1.69	1.37	1.64
Phosphatidylcholine (C18:0,C18:1)	1.08	1.18	1.31	1.11	1.12	1.05	1.28	1.72	1.51	1.72	1.24	1.28
Phosphatidylcholine (C18:1,C18:2)	1.09	1.10	1.20	1.02	1.01	1.05	1.20	1.26	1.13	1.40	1.13	1.27
Sphingomyelin (d18:1,C16:0)	1.00	1.02	1.03	1.06	1.05	1.02	1.11	1.18	1.20	1.10	1.09	1.08
Sphingomyelin (d18:1,C24:0)	1.07	1.13	1.23	1.10	1.06	1.03	1.08	1.33	1.07	1.28	0.97	1.12
Stearic acid (C18:0)	1.16	1.19	1.15	1.24	.23	1.25	1.30	1.87	1.65	1.21	0.93	1.52
threo-Sphingosine (d18:1)	1.24	1.22	1.43	1.06	1 28	1.31	1.28	1.44	1.43	1.85	1.64	2.27
Tricosanoic acid (C23:0)	1.02	1.20	1.35	1.22	1 39	1.39	1.18	1.46	1.45	0.95	0.56	1.50
		V										

2-AAF has a very low overall match with 4-AAF: rank 1443

Thank you very much for your attention

BASE We create chemistry